SM3 4.1 : Simplifying Rationals

For problems 1-6, simplify each rational expression. State any restrictions on x.

1)
$$\frac{35x}{7x}$$

2)
$$\frac{3x+12}{2x+8}$$

3)
$$\frac{x^2 + 7x}{x}$$

$$5, x \neq 0$$

$$\frac{3}{2}$$
, $x \neq -4$

$$x + 7, x \neq 0$$

4)
$$\frac{18x^4 - 6x^2 + 9x}{3x}$$

5)
$$\frac{8+2x}{2x^2+10x+8}$$

5)
$$\frac{8+2x}{2x^2+10x+8}$$
 6) $\frac{2x^3+13x^2-7x}{x^2+7x}$

$$6x^3 - 2x + 3, x \neq 0$$

$$\frac{1}{x+1}, x \neq -4, -1$$

$$2x-1, x \neq 0, -7$$

Show that $\frac{x^3-6x^2-7x}{x^2+4x+3}$ is equivalent to $\frac{x^2-7x}{x+3}$ for most values of x. State which values of x cause

$$\frac{x(x-7)(x+1)}{(x+3)(x+1)} = \frac{x(x-7)}{x+3} = \frac{x^2 - 7x}{x+3}, x \neq -1, -3$$

In the second equation, x can equal -1, so that is the value that causes the expressions to not be equivalent.

8) What is the simplest rational expression that represents the depth of a pond that is $\frac{3x^2-8x}{5x}$ meters deep?

$$\frac{3x-8}{5} m, x \neq 0$$

9) What is the simplest rational expression that can represent the diameter of a circle that has a radius of $\frac{4x-8}{3x-6}$ centimeters?

$$\frac{4}{3} cm, x \neq 2$$

10) What are the simplest rational expressions that can be used to represent the length and width, in inches, of a rectangle with sides that are $\frac{x^2-x-6}{x+2}$, $\frac{x^2+x-20}{2x+10}$, $\frac{6x^2-96}{48+12x}$, and $\frac{2x-6}{2}$ inches?

$$x - 3, x \neq -2$$
 $\frac{x - 4}{2}, x \neq -5$ $\frac{x - 4}{2}, x \neq -4$

$$\frac{x-4}{2}, x \neq -4$$

$$x-3$$